Радиатором секционным называется прибор конвективно-радиационного типа, состоящий из отдельных колончатых элементов — секций с каналами круглой или элипсообразной формы. Такой радиатор отдает в помещение радиацией около 25% общего теплового потока, передаваемого от теплоносителя (остальные 75% — конвекцией) и именуется «радиатором» лишь по традиции. Секции радиатора отливают из серого чугуна, их можно компоновать в приборы различной площади. Секции соединяют на ниппелях с прокладками из картона, резины или паронита.

Двухколончатая секция радиатора Чугунные радиаторы
Рис. 1. Двухколончатая секция радиатора: hп — полная высота; hм — монтажная высота (строительная); b — строительная глубина  Рис. 2. Чугунные радиаторы: а — М-140-АО (М-140-АО-300); б — М-140; в — РД-90

Известны разнообразные конструкции одно-, двух-, и многоколонных секций различной высоты, но наиболее распространены двухколончатые секции (рис. 1) средних (монтажная высота hм=500 мм) радиаторов. Производство чугунных радиаторов трудоемко, монтаж затруднен из-за громоздкости и значительной массы собранных приборов. Радиаторы не могут считаться удовлетворяющими санитарно-гигиеническим требованиям, так как очистка от пыли межсекционного пространства сложна. Эти приборы обладают значительной тепловой инерцией. Наконец, следует отметить несоответствие их внешнего вида интерьеру помещений в зданиях современной архитектуры. Указанные недостатки радиаторов вызывают необходимость их замены более легкими и менее металлоемкими приборами. Не смотря на это чугунные радиаторы — это наиболее распространенный, в настоящее время отопительный прибор.

В настоящее время промышленностью выпускаются чугунные секционные радиаторы со строительной глубиной 90 мм и 140 мм (типа «Москва» — сокращенно М, типа Стандарт - МС и другие). На рис. 2 приведены конструкции выпускаемых чугунных радиаторов. Все чугунные радиаторы рассчитаны на рабочее давление до 6 кгс/см2. Измерителями поверхности нагрева нагревательных приборов служат физический показатель — квадратный метр поверхности нагрева и теплотехнический показатель - эквивалентный квадратный метр (экм2). Эквивалентным квадратным метром называется площадь нагревательного прибора, отдающая в 1 час 435 ккал тепла при разности средней температуры теплоносителя и воздуха 64,5°С и расходе воды в этом приборе 17,4 кг/час по схеме движения теплоносителя сверху вниз. Технические характеристики радиаторов приведены в табл. 1.

Таблица 1. Поверхность нагрева чугунных радиаторов и ребристых труб

Чугунные радиаторы Чугунные радиаторы Чугунные радиаторы
Чугунные радиаторы                               Чугунные радиаторы

Рис.3. Чугунные радиаторы

Таблица 2. Техническая характеристика стальных штампованных радиаторов

Стальные панельные радиаторы состоят из двух отштампованных листов, образующих горизонтальные коллекторы, соединенные вертикальными колоннами (колончатая форма), или горизонтальные параллельно и последовательно соединенные каналы (змеевиковая форма). Змеевик можно выполнить из стальной трубы и приварить к одному профилированному стальному листу; такой прибор называется листотрубным.

Стальные панельные радиаторы отличаются от чугунных меньшей массой и тепловой инерцией. При уменьшении массы примерно в 2,5 раза показатель теплопередачи не хуже чем у чугунных радиаторов. Их внешний вид удовлетворяет архитектурно-строительным требованиям, стальные панели легко очищаются от пыли. Стальные панельные радиаторы имеют относительно небольшую площадь нагревательной поверхности, из-за чего иногда приходится прибегать к установке панельных радиаторов попарно (в два ряда на расстоянии 40 мм). В табл. 2 приведены характеристики выпускаемых стальных штампованных радиаторных панелей.

Схемы каналов для теплоносителя в панельных радиаторах Бетонная нагревательная панель
Рис. 4. Схемы каналов для теплоносителя в панельных радиаторах: а — колончатой формы; б — змеевиковый двухходовой; в — змеевиковый четырехходовой  Рис. 5. Бетонная нагревательная панель

Бетонные панельные радиаторы (отопительные панели) (рис. 5) могут иметь бетонированные нагревательные элементы змеевиковой или регистровой формы из стальных труб диаметром 15-20 мм, а также бетонные, стеклянные или пластмассовые каналы различной конфигурации. Бетонные панели обладают коэффициентом теплопередачи, близким к показателям других приборов с гладкой поверхностью, а также высоким тепловым напряжением металла. Приборы, особенно совмещенного типа, отвечают строгим санитарно-гигиеническим, архитектурно-строительным и другим требованиям. К недостаткам совмещенных бетонных панелей относятся трудности ремонта, большая тепловая инерция, усложняющая регулирование теплоподачи в помещения. Недостатками приборов приставного типа являются повышенные затраты ручного труда при их изготовлении и монтаже, сокращение полезной площади пола помещения. Увеличиваются также теплопотери через дополнительно прогреваемые наружные ограждения зданий.

Гладкотрубным называют прибор из нескольких соединенных вместе стальных труб, образующих каналы для теплоносителя змеевиковой или регистровой формы (рис. 6). В змеевике трубы соединены последовательно по направлению движения теплоносителя, что увеличивает скорость его движения и гидравлическое сопротивление прибора. При параллельном соединении труб в регистре поток теплоносителя делится, скорость его движения и гидравлическое сопротивление прибора уменьшается. Приборы сваривают из труб Ду = 32—100 мм, расположенных друг от друга на расстоянии на 50 мм превышающем их диаметр, что уменьшает взаимное облучение и соответственно увеличивает теплоотдачу в помещение. Гладкотрубные приборы обладают самым высоким коэффициентом теплопередачи, их пылесобирающая поверхность невелика и они легко очищаются.

Формы соединения стальных труб в гладкотрубные отопительные приборы Схемы конвекторов
Рис. 6. Формы соединения стальных труб в гладкотрубные отопительные приборы: а — змеевиковая форма; б — регистровая форма: 1 — нитка; 2 — колонка 

Рис. 7. Схемы конвекторов: а — с кожухом; б — без кожуха: 1 — нагревательный элемент; 2 — кожух; 3 — воздушный клапан; 4 — оребрение труб 

Вместе с тем гладкотрубные приборы тяжелы и громоздки, занимают немало места, увеличивают расход стали в системах отопления, имеют непривлекательный внешний вид. Их применяют в редких случаях, когда не могут быть использованы приборы других видов (например, для отопления теплиц). Характеристики гладкотрубных регистров приведены в табл. 3.

Таблица 3. Поверхность нагрева 1 м гладкой трубы регистра, экм

Число рядов труб по вертикали Диаметр трубы Ду, мм
25 32 40 50 70 80 100 125 150
1 ряд 0,179 0,157 0,22 0,29 0,372 0,436 0,529 0,651 0,779
2 ряда и более 0,165 0,131 0,18 0,238 0,305 0,357 0,434 0,558 0,668

Таблица 4. Зависимость теплопередачи конвекторов с кожухом от высоты кожуха (hк)

Высота кожуха hк, мм 0 (без кожуха) 250 400 600
Относительная теплопередача, % 100 115-120 130 140

Таблица 5. Техническая характеристика конвекторов

Конвектор — это прибор конвективного типа, состоящий из двух элементов — ребристого нагревателя и кожуха (рис. 7). Кожух декорирует нагреватель и способствует повышению теплопередачи благодаря увеличению подвижности воздуха у поверхности нагревателя. Конвектор с кожухом передает в помещение конвекцией до 90-95% всего теплового потока (табл. 4). Прибор, в котором функции кожуха выполняет оребрение нагревателя, называют конвектором без кожуха. Нагреватель выполняют из стали, чугуна, алюминия и других металлов, кожух — из листовых материалов (стали, асбестоцемента и др.)

Конвекторы обладают сравнительно низким коэффициентом теплопередачи. Тем не менее они находят широкое применение. Это объясняется простотой изготовления, монтажа и эксплуатации, а также малой металлоемкостью. Основные технические характеристики конвекторов приведены в табл.5.

Ребристой трубой называют прибор конвективного типа, представляющий собой фланцевую чугунную трубу, наружная поверхность которой покрыта совместно отлитыми тонкими ребрами (рис. 3). Площадь внешней поверхности ребристой трубы во много раз больше, чем площадь поверхности гладкой трубы того же диаметра и длины. Это придает отопительному прибору особую компактность. Кроме того, пониженная температура поверхности ребер при использовании высокотемпературного теплоносителя, сравнительная простота изготовления и невысокая стоимость обуславливают применение этого малоэффективного в теплотехническом отношении, тяжелого прибора. К недостаткам ребристых труб относятся также несовременный внешний вид, малая механическая прочность ребер и трудность очистки от пыли. Ребристые трубы применяют как правило во вспомогательных помещениях (котельных, складских помещениях, гаражах и т. д.). Промышленность выпускает круглые ребристые чугунные трубы длиной 1-2м. Их устанавливают горизонтально в несколько ярусов и соединяют по змеевиковой схеме на болтах с помощью «калачей» — фланцевых чугунных двойных отводов и контрфланцев.

Для сравнительной теплотехнической характеристики основных отопительных приборов в табл. 26 приведена относительная теплоотдача приборов длиной 1,0 м в равных тепло-гидравлических условиях при использовании в качестве теплоносителя — воды (теплоотдача чугунного секционного радиатора глубиной 140 мм принята за 100%). Как видно, высокой теплоотдачей на 1,0 м длины отличаются секционные радиаторы и конвекторы с кожухом; наименьшую теплоотдачу имеют конвекторы без кожуха и особенно одиночные гладкие трубы.

Таблица 6. Относительная теплоотдача отопительных приборов длиной 1,0 м

Отопительный прибор Глубина прибора, мм Теплоотдача прибора длиной 1,0 м, %
Радиатор секционный:    
типа М-140-АО 140 100
типа МС-90 90 71,6
Радиатор панельный:    
типа РСВ-1-500 18 44,5
типа РСГ-1-500 21 52,7
Гладкая труба:    
Ду32 42 6,3
Ду100 108 12,8
Конвектор с кожухом:    
типа "Комфорт-20" (КН20) 160 68,7
типа "Ритм" (КО20) 180 62,5
Конвектор без кожуха:    
типа "Аккорд" (КА) 60 30,8
типа "Прогресс-20" 70 30,0
Ребристая труба 175 44,6